On discriminativity of Zagreb indices

author

Abstract:

Zagreb indices belong to better known and better researched topological indices. We investigate here their ability to discriminate among benzenoid graphs and arrive at some quite unexpected conclusions. Along the way we establish tight (and sometimes sharp) lower and upper bounds on various classes of benzenoids.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on discriminativity of zagreb indices

zagreb indices belong to better known and better researched topological indices. weinvestigate here their ability to discriminate among benzenoid graphs and arrive at some quiteunexpected conclusions. along the way we establish tight (and sometimes sharp) lower andupper bounds on various classes of benzenoids.

full text

On discriminativity of vertex-degree-based indices

A recently published paper [T. Došlić, this journal 3 (2012) 25-34] considers the Zagreb indices of benzenoid systems, and points out their low discriminativity. We show that analogous results hold for a variety of vertex-degree-based molecular structure descriptors that are being studied in contemporary mathematical chemistry. We also show that these results are straightforwardly obtained by u...

full text

New Bounds on Zagreb Indices

The Zagreb indices are among the oldest and the most famous topological molecular structure-descriptors. The first Zagreb index is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index is equal to the sum of the products of the degrees of pairs of adjacent vertices of the respective graph. In this paper, we characterize the extremal graphs with maximal, sec...

full text

On the Zagreb Indices Equality

For a simple graph G with n vertices and m edges, the first Zagreb index and the second Zagreb index are defined as M1(G) = ∑ v∈V d(v) 2 and M2(G) = ∑ uv∈E d(u)d(v). In [34], it was shown that if a connected graph G has maximal degree 4, then G satisfies M1(G)/n = M2(G)/m (also known as the Zagreb indices equality) if and only if G is regular or biregular of class 1 (a biregular graph whose no ...

full text

On multiplicative Zagreb eccentricity indices

Abstract Analogues to multiplicative Zagreb indices in this paper two new type of eccentricity related topological index are introduced called the first and second multiplicative Zagreb eccentricity indices and is defined as product of squares of the eccentricities of the vertices and product of product of the eccentricities of the adjacent vertices. In this paper we give some upper and lower b...

full text

On leap Zagreb indices of graphs

The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  25- 34

publication date 2012-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023